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FOREWORD

A finite difference method suitable for the design of finned bodies in
supersonic flight is described. Efficient numerical calculations are achieved
using a thin fin approximation which neglects fin thickness but retains a
description of the fin surface slope. The resulting algorithm is suitable
for treating relatively thin, straight fins, with sharp edges which may be
deflected. Methods for treating the fin leading and trailing edges are described
which are dependent on the Mach number of the flow normal to the leading edge.
The leading and trailing edge analysis varies from exact to empirical as the
normal component varies from a supersonic to subsonic. A procedure for modeling
body crossflow separation using a Kutta condition is described which yields a
reasonable leeside vortex structure. Calculations are compared to experiment
for body-alone, body-wing, body-tail and body-wing-tail configurations. The
computer program, developed in this study, is described in a separate report.
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SECTION 1
INTRODUCTION

A practical means of predicting the nonlinear, inviscid, supersonic shock
layer on missile configurations is to numerically solve the steady,
three-dimensional inviscid equations using an efficient finite difference
method. Several computer programs are currently available for calculating
flow fields about arbitrary bodies in supersonic flow. However, their application
to practical wing-body-tail configurations presents some serious computational
problems. Existing codes treat the complete fin-body cross section as a single
entity. Thus when cylindrical coordinates described in Figure 1 are used, a large
number of 9 mesh planes are needed to adequately resolve the fin. When
several fins are present at the same axial station, the number of grid points
needed becomes prohibitively large for practical design calculations. The
number of grid points can be substantially reduced by mapping the fin body
cross—-section into a more rounded figure. The existing methods utilizing this
approach are based on conformal mapping techniques developed by Morettils
(also see References 3 and 6). However, the mappings are complicated even for
the case of a single smooth fin or wing and often tend to cluster large number
of mesh points near wing tips. This reduces the permissible marching step and
increases computational time.

The primary focus of the present study is the development of a more efficient
numerical technique for treating finned bodies. To achieve this, the approach
used here departs from the basic computational strategy used in References 1-7
when fin surfaces are present. Instead of considering the cross-sectional
body-fin geometry as a single entity, the present method considers the body
alone (i.e., the body with all fin surfaces removed) and the fin geometries
separately. The computational grid is generated using normalizing
transformations**®*-*/ applied to the body alone co.figuration. The fin
surfaces are allowed to extend into the computational region and can be
adequately resolved within a relatively coarse computational grid. In order to
treat the complex flow in the immediate vicinity of fin leading and trailing
edges, appropriate local analyses are built into the program which depend
strongly on the local Mach number of the flow component normal to the edge.
These local analyses can range from locally exact, when the edge is sharp and
the normal velocity component is sufficiently supersonic, to ad hoc or
semi-empirical in other situations. It 1s possible to exercise the above
computational procedure without recourse to a special leading edge analysis.
However, such a procedure is not as robust and does not resolve the leading edge
region as accurately.
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Within this framework, various approaches for numerically treating general
fin surface shapes are possible. One approach is to introduce extra
computational points to represent the fin surfaces which would float within the
basic grid. This would complicate the application of the boundary conditions on
the fin surfaces. Another approach, is to subdivide the flow domain into
several sub-regions each containing the flow between adjacent fin surfaces.
Relatively simple transformations are applied separately in each sub-region to
map ad jacent fin surfaces onto constant computational coordinate planes.
Relatively coarse meshes could be used in each sub-region and the computations
in the various sub-regions could be linked in a manner suggested by Hindman, et
al.9 Both the above mentioned approaches are in principle capable of handling
general fin surface geometries.

To simplify the development for the present study, the analysis is
restricted to relatively thin fins with sharp edges which lie approximately
along constant ¢ planes. A thin fin approximation is employed which neglects
the fin thickness but retains the actual fin surface slopes. For an important
class of body-fin configurations, the thin fin approximation allows the direct
use of the basic grid generated for the body alone shape without the
introduction of floating points to describe the fin surface or additional
mappings.

A computer program has been developed using the thin fin algorithm which is
capable of treating configurations with a large number of lifting surfaces. The
types of geometries which can be handled are restricted as follows:

1. The body alone surface, b(z,6), must be single valued in ¢. This
precludes a direct treatment of items such as detached inlets.

2. Fins must be relatively thin and lie near constant ¢ planes. In
practice it has been found that reasonable agreement can be obtained between
calculation and experiment on relatively thick or deflected fins. By moving the
coordinate system origin, it is often possible to position fins along constant
9 planes.

3. Fin edges must be sharp and the fin edge radial location, [(z), can be
single or double valued in z. This allows swept trailing edge configurations to
be treated.

4. Fins cannot extend through the bow shock.

In addition to the above requirements, the flow field must remain
supersonic throughout the entire calculation. This precludes bodies with blunt
protuberances which feature upstream subsonic flow.

The computational method described in this report is an extension of the
method developed earlier for re-entry bodies with cuts and flaps. A detailed
description of this method is contained in Reference 10 and will be only briefly
outlined here. The present report provides a description of the analysis for
configurations with fins, various special procedures required for different
configurations and flow conditions, and also comparisons of the numerical
results with available experimental data. A description of the computer
program and user guide is provided in Reference 11l.

10
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SECTION 2

COMPUTATIONAL ALGORITHM

Euler's equations are solved numerically in a region bounded by the missile
body (i.e., with 1lifting surfaces excluded) and the bow shock. At interior
points these equations are cast in weak conservation form and advanced using the
MacCormack predictor-corrector method. At the body, fin surfaces and bow shock,
special sets of equations are solved using the MacCormack predictor-corrector
method with appropriate one-sided differences. These sets of relations combine
the admissible characteristic compatibility relations and the appropriate

boundary condition.

2.1 COMPUTATIONAL REGION

The flow field equations are initially written in cylindrical coordinates
(r,$,z), shown in Figure 1, and then transformed into (X,Y,Z) coordinates for
the purpose of numerical integration. The current computational algorithm
admits transformations of the form:

Z =2z, X =X(r,0,2), Y =Y(%,2) (1)

This transformation maps each crossflow plane into the square computational
domain depicted in Figure 2. The missile body (i.e., excluding the lifting
surfaces) and shock are located at X=0 and X=1 respectively while the Y=0 and
Y=1 planes correspond to ¢ = 0 and ¢ = ¢&. Fin surfaces are allowed to

extend into the computational domain along constant Y planes. The thickness of
fins is neglected via the thin fin assumption which is described later in this
section. Two sets of varjable values are carried at grid points describing a
fin, one for the upper surface and the other for the lower surface. The
required mapping is thus only a function of the body alone plus shock geometry
and it is expressed as a composite of two transformations. The first is the
usual normalizing transformation given by

X = [r~b($,2z)]/[c(d,2)-b(¢,2)]
(2)

Y= 0/bx, z = 2
The second mapping is primarily used to cluster computational points in r,¢,z

space while retaining a uniform grid in the computational region. This mapping
1s conveniently expressed in inverted form as

X = £(X,¥,2), ¥y = g(¥,2), z = 2 (3)

11




i
<
.
A
>
3
I
!
e

NSWC TR 81-457

where £(0,Y,2) = 0, £(1,Y,Z2) = 1; g(0,Z2) = 0, g(1,Z) = 1. Apart from these
conditions, the mapping functions f and g are arbitrary provided that the
functions and their derivatives through the second order are smoothly defined
and fy and gy are positive. In the present code the functions f and g can

be analytically or numerically defined as is discussed in Reference 1l1l. 1In the
latter case the required derivatives are defined using second order finite
difference methods. If mesh clustering is not required, f = X and g = Y.

From (2) and (3):

Y, = _gz/gY: Yy = 1/(¢%gy),
Xp = 1/[fx(c-B) ],
(4)
X, = ~(£2+Y,fy)/Ex+Xe[ (E-1)by-fc,],
Xp = ~Yofy/fx+Xp[(£~1)byp=fce].

When there are no fins present each computational plane, Z = constant, is
covered by a uniform mesh defined by

{(Xp,Yy) : Xp = (n-1)AX, Yp = (m-1)4Y, n = 1,2...,N; o = 1,2...M

where AX = 1/(N-1) and AY = 1/(M-1) for the symmetric case and AY = 1/M

for the asymmetric case (N,M are positive integers). When fins are present,
this computational mesh is modified by applying planar cuts along the fin
surfaces.

The alﬁirithm for advancing the unknown flow field quantities from Z = Zk
to zK+l = 74

Z depends on the location of the individual mesh point in the shock

layer. These are divided into the following four types: interior, body surface,
shock, and fin surface points. The procedure for treating the first three types

of points is outlined in the next section with more details provided in

Reference 10. This is followed by a discussion of the fin surface treatment. T

derivation of the fin surface compatibility relations is provided in Appendix A.

2.2 INTERIOR, BODY, AND SHOCK POINTS

The flow field quantities at interior points are advanced using Euler's
equations in weak conservation form:

A(xl) +3(cF) + 3G = F (3)
3

3z 3r 36

~

where E,F,a; and E are column vectors defined in transpose form by

Tt

(ow, ptowl, owu, PwWv)

Ft = (ou, pwu, p+ul, ovu)

(6)

ot

(ov, pvw, pvu, ptovd)

Ft

(0, 0, p+pv2, -puv).

he
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The energy equation for a steady inviscid flow with an isoenergetic free

N stream reduces to the following algebraic relation: i
h + é (u2+v2+w2) = h 4-%(u2+v2+w2) = const. = H (7)
@ w -] -] 0

The gas is assumed to be perfect which allows the system to be closed by
applying the definition:

h=_JXYP | (8a)
(y=1)»

Additional thermodynamic relations which are used throughout this report are:

1 a2 =yp/e (8b)

4

b s=1np-vlnop (8¢c)

1 The system (5) when transformed by (1) can be written as

! 30 +3F + 3G = g (9) N
X Y

3 32 9
where

U=rJ"I0, F=rJ1 [xzﬁ+xr?‘+(x¢/r)§‘],

6 = rJ-1{y,U+(¥,/r)C], E = (I"LHE, J = (X.¥))

$

The above equations are integrated using MacCormack differencing:

k k Gk _ Gk K
uv* = -(FntI,m~ Frti-1,m} 8z - (Cn,mts ~ Cn,mki-1)az +ES 4z + UK (10a)
b n,m
n,m AX AY
*
F - F¥ G* - * -
gktl = 1 gk 4+ yx - m+l-1,m n-Im a7z - n,ml-J n,m=J )] az +E £Z
= n,m’ “n,m n, 4
n,m 2 AX ) AY 5
(10b)
where U* is the predictor value and F* = F(U¥ x4 ).
n,m ! *“m’ m
Here I, J = 1 produces a forward difference in the predictor step and a backward
difference in the corrector while I, J = O yields a backward difference in the
predictor step and forward difference in the corrector step. At the end of both

the predictor and corrector steps the physical variables p,0 ,u,v,w are decoded
from U and (7) using the relations:

ES

U2 [Y+'I-!] (11)

U (v+ 1)

W =

v
,0:(72_1) [HOCTJ_];)Z_IJ
2

13
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u = U3/U3, v = Us/U)
P=(Cy, ~Uw)(I/r); o = (Up/w)(I/r)

The step size, AZ, is chosen to satisfy the CFL stability conditions for
the MacCormack scheme. This consists of ensuring that the domain of dependence
of the partial differential equations is contained within the domain of
dependence of the finite difference equation at all points. The derivation of
the CFL condition for the MacCormack scheme is provided in Reference 10. The
resulting relations are:

2 2

8Z = ¢ 4AX min{L.:u__a_) (12)
where: W o= max(ui,u3,k3)
ul = ’wA-aZXZ‘ + a<J(w2—az)(X% + Xé/rz) + (A-sz)2
u, = [8] (| wB-a2y, | + & y(uZrv2-ad)(¥/x2) ]
b, = IwA—aZXz - & (uB-a2y Z)|

+ a\/(wZ—aZ)[x2r+ 1r_§ (x¢-3Y¢)2] + (wxz-m«'s”qu)/rﬂ

" { AX/AY, if I1=J
d =
- AX/AY, if I4J
X v
A=Xu+_% v+Xw B=2% +Yw , §= safety factor ~ .9
r r K4 r z

The minimum AZ taken over all the computational points is used as the step size.

Ou the body boundary (X = 0) the component of velocity normal to the body
surface must vanish; i.e.,

u = byw = (by/b)v = 0. (13)

This condition is supplemented with certain characteristic compatibility
relations associated with the system (9). This approach was originally
suggested by Kentzerl? for unsteady flow problems and has been adapted, in
different form, to steady supersonic flow in References 4 and 5. The method
used in this work is given in detail in Reference 10 and is only briefly

-
o~
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reviewed. It is found that there are three independent characteristic relations
which are admissible on X = 0. These can be written as a system of quasi-~linear
first order partial differential equations on X=0 for advancing P = 1n(p),

b
V2 = u r‘b + v and s. The resulting relations are:

P wlxa3p-1_ (pw[r 38 -(aw+av)]+p| 1
3 [rﬂx B *ax 7 4 P (14a)
~ -~ A
where P=PYV +w e +E 3G (14b)
b 2 + 1 Y
1
+ Plgz(Tngz + Tg6) + 354 (Tngq, + bd)/b)]
2
a¢ (B-b ) 2 b
S s B T z_)vg-[uu_)h
+ 202 1 K b
2 by, = Yyl
a =_& = - Y,/Y
7 37 zz zplz/ 1
a(b,/b) b b
= $ =1 -z - -
8, T = ilbgy 22 - (byy b2/B)Y /Y]
-
T = (§1,52,63,54)
E =wh (2-V& /o) , E_=b -2 +wk 1 /o
1 + 1 2 z + 1+
E = yukd fo=-1 , E = gukX /o +b /b '
3 1 + 4 1+ %
Kl = (%%)p = 1/(%;)p' (Kl = - p/h for a perfect gas) ;?
A |
Tgs = 8YY/8Y ’ Tg6 S8ZY/8Y , G = GJ/r i
*,'
vi= 1+ (b¢/b)2+b§ '
i
i
3V2 .
—_—i =g u+ Vhow
3 4 (15a)

|
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where
| 5 —’a/c\
v = 083 ~ pvyb,/b - p(T,.Y; + bs/b
3y z ‘E( gs¥s * be/P) (15b)
7 = (M1,72,73,74)
np=Va ,n2=0 , n3=-1h/b ,n4=-1
3s = - p s (16)
VA W a3y

Equations (14) to (16) are advanced using a predictor-corrector method of
the form (10) but with the X derivatives replaced by forward differences in both
the predictor and corrector steps. This differencing scheme which is first
order accurate can be made second order accurate using the procedure given in
Reference 10. At the end of both the predictor and corrector steps, wall values
of p,p,u,v,w are determined from P,Vs,5,(7),(8¢c) and (13) which can be manipulated
to give the relations:

exp(P); 92 = 2(H, - h)

o
]

(p/exp(s))1/Y

V : ﬁ
[1+(ty /b)2]q2-v; /[ vy

(17)

©
"

£
]

v 1 = (/Db /L + (b /5)?)

u = byw + (bky/b)v .

Alternative expressions for:) and ¥ of (14b) and (15b) which often give
improved results are:

P = 2LV, 4 [b¥p + L byty + By - Yp) A2R (lbc)
b a

- 0B (agw + ajv)

+ow {(T, =T, )w+Y¥T, +¥[y 3(v/Ww) +p_1}
+ e T8 5 £, 750 Ty 2

i6
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where
°®, b,./Y
a = < = >,
5 3y Y
d(b /b)
a =_9% " = [bye/b = (bs/b)2]/Y
3 T —— " (bte 0/ BIE1/ Yy
£ +Yf b - Y £ b -
Tf6 = T86 + 22X 2 YX - ( z cz) 5 T, o= oYX _ ( ¢ c¢)
fx (c = b) 7 fx (¢ = b)
and
. av 5
U =pB(au-—2)-1Y3P -pvwb (15¢)
3 Y b a3y ~“F z

These equations are algebraically identical to (l4b) and (15b). They
produce slightly different numerical results because the X and Y differences
F involve different quantities.

Many body configurations of interest have sharp corners or edges such as
those found on biconics and other segmented shapes. If the upstream body
surface velocity normal to this edge 1s supersonic, either a shock wave or arn
expansion fan will be attached to this edge producing a discontinuity in surface
flow variables. To handle this situation, an oblique shock or Prandtl-Meyer
expansion is applied at the edge as is described in References 8 and 10. 1In the
interior these discontinuities are captured using the dissipative and
conservation properties of the interior point scheme.

At the bow shock, flow field properties, as well as the shock slope, are
unknown. The correct boundary conditions are provided by the Rankine~Hugoniot
conditions which relate the free stream properties, the shock slopes, and the
properties behind the shock. An analysis of the characteristics associated with
the system (9) indicates there is one admissible characteristic rel:-ion on X = 1
(see Reference 10). This expression, when combined with the Ranki: e-Hugoniot
23 relations, results in the following system of equations which are use! to
"1 advance c, ¢, and cy:

3¢ ¢ =-(Y/Y)c

t 32 z z ¢
: 3 3 3 (18)
c¢.y cz-Y s
3Z $ 9 z3Y
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where

2 2
C; = {(vg Wa = ¢, Vnm) Al = (p = Pw)[1 + (cg/e) /vy

2
{[vs Vo = (co/cIVy ] A1 + caleg/ed(P = Pad}vs

(8]
L}

Al = [Bo Pw Vp +0 (Vg W = cz Vp )] A * Bp 0w (Vo = Vp)
o -] ®

2 2 2
(Vo = Vp)la +Vp+x1 (a /0)V(Vy - V)l

o

2
Vn (a2 - V)

[ ]
[}

l#(wz - a2){1 + (c /c)?) + [u - (¢ /c)v]?
a ¢ ¢

xk = (30) =1/0b) (k = -P  for a perfect gas)
1 3h p 3p p 1 h
— Al A A

R =0 CE+3C+E) -~ (A -vowlv + (c/e)u Y /(Y v)

s 3X dY 1 s ® ¢ @ z ¢ s

A A o~ ~ 3X 3Y ~ 3X ~ 23X

F= FJ/r ; E=(F~E) [—2+_2] U-_LF-[_2%+
X Y X 3X

T = (51, €2, £3, §4)

2
[2 - (x1/0)V A_, %T2= [(u= (cp/c)Vv) =A_)/w+2ir_x; w/o

£1

3 A_Kl u/e - 1, L4 = C¢/C +X_|<1 v/p
2 2 2
A= =a {Bow + [u = (c/c)v])/(w = a)

e, 2
392 = 1 409y + 2
s ¢ 2

V = (u=ve /c = we )N
n $ F4

18
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A A A
In the above, the quantity 7* (F +3G + E) denotes the inner product
9X 3Y

of these vectors and V; 1is the free stream velocity component normal to the
shock. Since C; > 0, the equatioms (15) = (17) can be used to advance c,

¢,, and ¢, in a predictor-corrector method of the form (10) but with the X
derivatives replaced by backward differences in both the predictor and corrector
steps. With the local shock angles thus determined, the flow variables at X = 1
follow from the Rankine-Hugoniot conditions and the known free-stream
conditions. The resulting relations are:

p=_1_ [b (1) + 20 V2 ]
y+1 ® ® Ty
(19)
2 2
p=p Vg /(Po Vo + pw — P)

Va o
u=u +( °)(l-i>,w=w —(u-udec,v=v = (u-u)( /e)
L (]

@® Vg p @ © z @

In the above, W ,% ,4 are the free stream velocity components given
by Ve cosB cosa, Vp, (cosB sina sind ~ sinB cosb), and
-V, (cosB sind cosd + sinB sind), respectively.

2.3 FIN SURFACES

2.3.1 THE THIN FIN APPROXIMATION AND IMPLEMENTATION. The thin fin
approximation is applicable to fins with surfaces that lie close to a constant
¢ plane, say ¢ = ¢¢, which is defined as the fin plane. The fin geometry
is assumed to be represented by two surfaces, the upper and lower surfaces, each
described independently by relations of the form

¢ =of + o(r,2) (20)

In the cross-section Z = constant, the actual fin surfaces will lie within the
computational mesh as shown in Figure 2. The thin fin approximation assumes
that ¢ 1is small and thus places the fin surfaces along the fin plane
corresponding to Y = Y¢ in each Z = constant plane. Although the fin is
approximated by a zero thickness plane lying on ¢ = ¢¢, the surface slopes
are described to O(la‘). The fin surface is prescribed by specifying
8(r,z),v(r,z), L(z) and the first derivatives of these quantities. Here

@ and v are the angles between the fin surface tangency plane and the fin
planes in the r and z directions respectively, and the quantity L is the
radial location of the fin edge. In terms of 6, v the derivatives of ¢
correct to O(]o| ) are given by:

0, = tan 8, 1o, = tan v,

ropy = sec? 8 (B -vy) -0y (21)

19
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2 2
9,, = sec V., = N tanv, 7., = secB® (8, -9,)

Within the restriction that|o| be “small”, the thin fin approximation can be
applied to arbitrary fin geometries including surfaces with discontinuous slopes
and fins with "small"” deflections, camber, and variations in dihedral.

The numerical algorithm for treating fins by the thin fin approximation
requires that the computational mesh be chosen so that each fin plane is
coincident with a computational mesh plane, Y = Y¢. Two sets of computational
points are carried on the Y = Y¢ plane to describe the flow properties on the
upper and lower surfaces as is illustrated in Figure 2. The upper surface of a
fin features an outward normal that has a positive é@ component, while the
lower surface has a negative & component associated with its outward

normal. As the calculation is marched down the length of the body, fin surfaces :
are encountered on Y = Y¢, Thus a point at some X may at one axial location

be an interior flow field point and in the next axial step move onto the fin. Here
the interior point is split into two points corresponding to the upper and lower
fin surfaces. The fin points thus created are referred to as leading edge

points. For a fixed X, a pair of points which are on the fin at one axial step
can in the next step move off the fin and become a single interior flow field
point. Such a point will be referred to as a trailing edge point. The flow
variables at leading and trailing edge points are determined from an appropriate
local analysis which is described in the following subsections. The adjustment
for the presence of a leading or trailing edge is made immediately after the
completion of the step in which the edge is encountered. The values of the flow
variables prior to the adjustment are termed upstream while the adjusted values
are termed downstream. Note that the locations of leading and trailing edge
points are within one 4Z of the physical edges of the wing.

2.3.2 FIN SURFACE BOUNDARY CONDITIONS. On a fin surface, the velocity
component normal to the surface must vanish; i.e.,

v/r =o6,w ~cu = 0. (22)

The numerical methods used to advance the fin surface points are based on the
appropriate charactistic compatibility relations associated with (9) which are
derived in Appendix A. Both the upper and lower fin surfaces, although
considered separately, are treated using the same techniques. For fin surface
points not on the fin body junction (X=0), the three compatibility relations
listed below are used to advance s, V3 = u + ro,v and P = in p along the

fin surface:

38 = - (X w+ X u+ X,v/r)2s (23)
3z w Z r X
Pri 5
V4/°Z = v(ag + ay) + V/ow (24)
. ~ A X 5
where V= (-V_,0,1,r0.) 3CF )4 pl_rt + (Xafr)]’
3 ax ax T T ax

4] = Wrz = (Or + Orpjag, ag = (9,Xp + X))/ (Xp + cpXs)

20
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3p = M[3p + ou(o, du + 0y du - 1 9v)]
YA Y [3] oY oY r 9Y

(25)
+(l/B)[DW[U(d1 - A) +uway + vV3/(rw)]/r

A
-73F + (ow2X + pny) %z + (pwur + pn3)d¥p
X X )¢

+ et + pn)2 s /t)
X

wz(
aZ

X = azgi :acz) s Yo = YpXp/(Xp +0r%g)

2
@) = W4, ~ @(0, + r0p,), N1 =Aw(2 -« [T] ),

where 8 =+ [ + 02 + o%) -1 - 0%11/2
- T2

1
T2

2
ng = (Wx ~ 1R +0,, 3= wok +0,,
ng = Wik ~ 1/r

pk = (30/3h) =- O for a perfect gas .
P h

The upper and lower signs in B are used on the upper and lower fin surfaces,
respectively. The quantities %Z and %f in (23) (24), and (25) represent the

partial derivatives of quantities defined on the fin surface and thus are
functions of Z and X only. Equations (23), (24), (25) follow from the
compatibility equations derived in Appendix A without approximation. The thin fin
assumption is applied by evaluating flow field variables and transformation
quantities (Xr,Xz,Xb,etc.,) at the fin plane rather than at the actual fin
surface. Predictor-corrector differencing of the form of (10) is used to march
the solution in Z. However, the Y derivatives are replaced by forward differences
on the upper fin surface and the backward ones on the lower fin surface in both
the predictor and corrector steps. At the end of each computational step, the

quantities p,p,u,v,w are determined by simultaneously solving (7),(8¢)(22) and
the definition of V3. This yields:

p = exp (P) L (26a)
e =[p/lexp(s)] 7 (26b)
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2(H, - h)(1 + r& 2) =V 7
w r 3
2.2 2.2

+ 1

rOr+rJz

+
v =(m r)V3 rvzw

1+ r2 0%

u=Vy - 10opv

The fin body junction is assumed to be a sharp corner.

(13) and (22) are satisfied and thus flow is directed along the corner.
implies that entropy is constant along the corner except at compressive
discontinuities in body or fin slope and at leading and trailing edges.
(7) also holds, only one additional relation is needed to completely determine
the flow variables along the junction.
compatibility condition.
appropriate characteristic condition.
Appendix A:

where

b
3p = XA P +0¥(b 3w 4+ ¢ 3v -3uy)
Az . X By b

23X 3IX 33X
+ 0¥ _{bYrhAy (o, 2 40, 3w - 13V,
55y -1 T3y %3y bay

+w(agy +agAg) +uf@g Ay =Ap) + vieg

- (V2 = AqV3/b)/w]}

2
Ay = a (@,T - bR + B1R)R1, A2 = (R

2 2 2 2 2 1
+ao0,81)Ry, B ={@®@®R3 ~-82)/[a (w - a )R]}

2 2 2 2 22
R=0, +0d,+1/b, S=by,+1+by/b ,

~

2 2 2 2
~op - by/b,R8] = (v -a)R+ac,, 82

2 2 2 2 2 2
~a)T+abp,, §3=(wv =a)S+ahb,,

2 = b(bzy + 13byg), a3 = (@ by +9,)/(1

45 = by, = byby/b + a3(bbyy - by)/b

22

/

T =0,b,

2
=(w

-’er¢),

2

At this corner both
This

This is given by a characteristic
However, an ambiguity arises in the choice of an
Two possible equations are derived in ]

»

Since

(26c)

(264)

(26e)

(27a)
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and
3p = YA [BP+PW (g W 4g 3u-1dvy
9Z § 33Y B z3dY raY bay
b
+8¥ {bXA (b 3W -3u 4 v
b8, r 3 z3X 23X b ax
+ w(azhy +a2)+u(al-A3)+v[A4u5
- (AgVp = V3/b)/w]} (27b)
2
where A3 = a [b,T -0 ,5 + 882]R3, Ay = (-02
2 1/2
+ a b,87)/M3, B8 = + 83(R/S) . The upper and lower
signs are used for the upper and lower surface junctions, respectively. In
(27), 3 _and 3_ represent the derivatives of quantities defined on the fin
X 3Z

surface as a function of X and Z only. Equation (27a) is based on the
bicharacteristic lying along the wing surface while (27b) corresponds to the
bicharacteristic lying along the body surface. Both equations appear to produce
similar results except when large pressure gradients occur in the vicinity of
the junction (i.e., close to a leading edge or surface discontinuities).
Computational experience seems to indicate that the more robust relation
corresponds to the equation lying al 'ng the direction with the smallest pressure
gradients. Both of the above equa*.ons follow from the compatibility equations
derived without approximation. The thin fin assumption is introduced by
evaluating the flow field variables and transformation quantities at the fin
plane rather than at the actual fin surface.

At the completion of the predictor-corrector sequence, the pressure along
the corner has been determined using equations (27a) or (27b) and the entropy is
unchanged fom the value at the previous step. The quantity p is obtained from
(8c), the enthalpy from (83) and the magnitude of the velocity from (7). The
velocity components u,v,w are resolved by requiring that the velocity vector be
coincident with the corner direction which is given by &f X &b, where H¢ and
ﬁb are the normal vectors to the fin and body surface respectively, as shown
in Figure 3. Hence,

(b +0 b) b@ b +0 ) (l-0.b)
u = z z ¢ Ial; v = r z Zz la!; W= z ¢ [q[ (28)
| Ac| g} | nc| :
where Bc = (bz + 02Dy )8r + b(Orby +a5)ep + (l'orb¢)zz |
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2.4 FIN EDGES AND SURFACE SLOPE DISCONTINUITIES

2.4.1 LEADING EDGES. A leading edge point occurs when an interior point
moves onto the fin surface. This point must then be split into two poincs in
order to allow both the upper and lower fin surfaces to be descrited. Several
different strategies are available for treating leading edge points. The
sinplest approach is to switch from the interior point advancement scheme (9) to
the fin surface scheme (23), (24), (25) at the leading edge. This is referred
to as option 0. To accomplish this, the computation is carried out through the
predictor step using the interior point advancement scheme. At the end of the
predictor step the z value is advanced, the fin geometry is updated, and the
leading edge is detected. The corrector step at the leading edge pocint is
rompleted using the fin surface compatibility equations. Thus for a leading
edge occuring in step k at (X,Y¥p):

pk = (pk=1 4+ p* +dPlazy/2
n,m n,n n,m dZ| n,m
% dv
vk = (vk-1 + vy +_31az)/2 (29)
3 3 3 d2 n,m
n,m n,m n,m
sk = (sk7l + g% 4+ dsiazy/2
n,m n,m n,m dZ| n,m

Here P*,Vg and s* are the values at the end of the predictor sequence.

To evaluate the above requires that P*,Vg,s* and Pk'l,vb‘l,sk‘l be

constructed. The quantities P*,P,s and s* follow directly from calculated p¥*.p
c* and p values. To form V3 = u + (rcy)v and V3*= u* + (rCp)v* the value of
(ro,) at the leading edge point is used. Leading edges at the body fin

junction are treated in a similar fashion, bvt in this case only the pressure is
advanced.

The leading edge option O represents a formal descretization of the various
applicable equations without recourse to additional modeling at the leading
edge. 1In principle, for this option to be successful, sufficiently fine grid
and step size must be used to allow the solution to "capture” the effects
associated with the presence of the fin edge. In practice, this option gives
poor results or fails altogether when the flow features shock or expansion waves
which produce large jumps in the vicinity of the edge.

An alternative apprcach is to apply locally an analysis which models the
flow very near to the leading edge. This is designated as option 1. The
justification for this option is that in most calculations, for reasons of
computational efficiency, the mesh spacing in the vicinity of the edge is not
sufficiently fine for option O to yield satisfactory results. The computaticnal
algoritim proceeds by completing the step in which a leading edge is encountered
without taking the fin surface into account. The resulting flow properties are
then taken as the conditions immediately upstream of the leading edge. An
appropriate local analvsis is then used to determine the flow quantities
immediately downstream of the edge for both the upper and lower fin surfaces.
The downstream flow quantities are then assigned to the leading edge points on
the appropriate fin surface. The fin surface variables,P,V3,s are then
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advanced from the downstream values using the procedures described in Section
2.3.

The velocity vectors used to characterize the local flow at the leading
edge are shown in Figure 3 where Kf is the fin surface normal and f_ is the
normal to the plane defined by the upstream velocity vector q and leading edge
tangert vector T. These vectors are defined by:

T =L, 64+ &
Bf = - roép + 3@ - ro,8, (30)

o= er + (Lyw - u)zé- LZVEZ

Depending on the orientations of ﬁf,?L and §, the local analysis introduces an
appropriate expansiqg or compression turn of E from the plane normal to ﬁ;.inco
the plane normal to ng. The specific turning procedure, which strongly

depends on M, (the Mach number of the upstream velocity component normal to

the edge) is described in Section 2.4.4. The local analysis is exact if the
turn on both sides of the wing can be accomplished either by a Prandtl-Meyer
expansion or an oblique shock attached to the leading edge. In other cases, the
concept of the exact local analysis breaks down and approximate or heuristic
local analysis procedures are used as outlined in Section 2.4.4.

In cases when Option 1 is used and ar attached shock does not exist at the
leading edge, it has been found necessary to specify the downstream streamline
direction. Figure 4 illustrates the influence of changes in streamline direction
on the calculated surface pressures. As the streamline direction is turned
outward, the pressure gradient downstream of the leading edge becomes increasingly
negative. In the current method the streamline direction is set such that
tan (u/w) = .09911.

At the body fin junction option 1 is implemented by rotating the leading edge
flow velocity vector within the tangency plane vntil it is in the corner direction,
> . . : . .

n., which is given by (28). The required turning angle is:

§ = ¥ sin"L((&Rp) /(| IRE D] 31

The - and + sign apply to the upper and lower surface respectively. An expansion

occurs if 3 < 0 and a compression if 4 > 0. The turning procedures described in .
Section 2.4.4 are used to determine the downstream values of p, o, and q. It

is possible for a body slope discontinuity to occur at the same axial station as
a body-fin junction leading edge. 1In this case the body discontinuity is
treated first with the presence of the fin neglected, using the procedures
described in Reference 10. The body-fin junction leading edge treatment
described above is then applied. In some cases the turning angle predicted by
(31) becomes excessive, producing an unrealistically large pressure jump and
possibly subsonic flow. Since viscous effects are likely to be important
in these regions, the computational algorithm allows a reduction of the
turning angle calculated from (31). For this purpose a multiplying factor,
CT’ is ilatroduced, the value of which is user-selected and is < L.
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If My is significantly less than unity, the jump conditlions assigned by
option 1 oiten do not give satisfactory results. This is particularly true on
the expansion surfaces where the local analysis produces extremely low
pressures. The condition M <<1 occurs on highly swept wings which feature
ieeside separaticn and a large leeside vortex. This vortex generates a suction
on the upper wing surface which increases the wing lift. Under these
circumstances, the streamlines on the upper and the lower wing gsurfaces are
directed outward at locations near the edges. The conditicns at the leading
edge are thus strongly influenced by the flow on the fin surface. To handle
this situation, option 2 is introduced. When an interior point (X,,Yn)
moves ¢nto the fin, the leading edge pressure and density is determined bty
averaging values at (Xp-1,Yy) and (Xn,¥y). Using (7) the magnitude of
the velocity vector at the leading edge is determined and this vector is assumed
to be parailel te the fin edge. The resulting expressions for the properties at
2 leading edge point (X,,Y%) are:

Pn,m = (Pn-1,m + Pn,m)/2

°Pn,m= Pn-1,m+ °n,m)/2

q =\2(H, - h) (32)

2172
Yn,m % QLZ/(l + Lz>

Vn,m T 0

21/2
wn,m = q/(l + Lz)

2.4.2 TRAILING EDGES. At a trailing edge the two points on Y=Y¢
representing the upper and lower fin surfaces, are coalesced into a single
interior flow field point. A local analysis is used to determine the flow
downstream of the trailing edge. The computational algorithm proceeds by
completing the step in which a trailing edge is encountered without taking the
fin edge into account. The resulting flow properties on the upper and lower fin
surfaces are the upstream values and represent the flow properties on the two
fin surfaces immediately upstream of the trailing edge. The local analysis uses
these two sets of flow properties in conjunction with the local fin geometrv to
determine the value of the flow immediately downstream of the trailing edge.

The trailing edge local analysis is dependent on thre Mach number normzl to
the trailing edge. If the flow component normal to the trailing edge on btoth
surfaces is sufficiently supersonic, the streamlinres from the upper and lower
sides of the fin will turn onto a slip surface with normal s (see Figure 3) by
means of a system of oblique shocks and/or expausions which are attached to the
trailing edze. The orientation of the slip plane onto which the streamlires are
turned is such that the final pressures on both sides of the slip surface will
be the same. Reference 13 describes an iterative procedure for determining the
plane orientation. Unfortunately this scheme is cumbersome to apply and
ccnvergence canrnot be guaranteed - Thus, this procedure has been discaided in
favor of a simpler method that turns both of the surface streamlines onto the
fin plane (i.e., s = e€p). The coalesced property values for p,s,u,v
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are then determined by averaging the results on the upper and lower surface
streamlines. The velocity component w is solved for from (7) which ensures that
the coalesced trailing edge point has the correct total enthaply.

If the flow components normal to the trailing edge on either wing surface
are subsonic, a different algorithm is applied. At a trailing edge point
) (Xp,Yy), flow properties are assigned to be those at (Xp+1,Yp), unless this
i point is a fin point. In that case properties at (Xu-1,Yn/ are used. If
both of these points are on the fin, the upper and lower surface properties are
set to the average values at points (X;,Yu+1) and (X,,Yn-1).
3

At trailing edge points located on the body-fin junction the flow is turned
within the body tangency plane uging+shocks or expansions until it is directed
along the fin plane with normal s = ey. The required turning angle is:

I R

_ ub + w
cos~1 z

(33)
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On an upper fin surface a ccmpression is required if v < 0 and an expansion if
v > 0. The reverse sign convention applies on lower surfaces. The resulting

; values of p and p are determined by averaging the downstream properties on the

upper and lower surfaces. Since d ®* & =0, v = 0 and u and w components

are solved for by satisfying the total enthalpy coundition (7) and the body

boundary condition (13). This yields:

26 - h) [1/2
Mo (3¢)

(1+ bzz)

u = byw

2.4.3 SURFACE SLOPE DISCONTINUITIES. Fin surfaces of design interest
often contain slope discontinuities. Particularly when the surface velocity
component normal to the discontinuity is supersonic, it is advantageous to apply i
a local analysis. This procedure turns the flow across the discontinuity by .
means of an oblique shock wave or expansion. The computational algorithm for
handling fin surface discontinuities is analogous to that developed for body
discontinuities in Reference 10. The scheme proceeds by completing the step in
which the slope discontinuity is detected without taking into account the
presence of the discontinuity. The resulting values at the end of this step are
the upstream properties which in conjunction with the local fin geometry are
used via the local analysis to determine downstream conditions.

A fin surface slope discontinuity is defined to occur if the following
inequality is satisfied:
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LN R (04 It B 3% = 557 - az sax b, e P | 2 z07h)
'. where vk = vk - Xak oy = gk - X5 ok (35)
Xr -

' The upstream flow properties and the vectors normal to the fin surface upstream
# (ﬁf )} and downstream (Ff ) of the surface slope discontinuity form the

& necessary inputs For the turning procedure outlined in the following section.

r The vectors nf and nf are illustrated in Figure 3.

3 -+

] 2.4.4 EXPANSIGON AND COMPRESSION TURNS. As indicated in Sections 2.4.1 to
- 2.4.3, the treatment of leadirg edges, trailing edges and surface slope

1 discontinuities involves turning the flow bv either a compression or expansion.
This section provides the analysis used in implementing these turns and
constructing the velocity downstream of the turn.

N The parameters needed for calculating a compression or expansion turn are:
n ,n+ p_,o_ and q_. Here the minus and plus subscripts refer to the -
quantities upstream and downstream of the turns respectively. The vectors n_
and n+, which are involved in this analysis, are illustrated in Figure 5. In
the case of a leading edge, the n vector used in this section corresponds to
the n vector defined in Section 2.4. l while the h4 vector corresponds to

Mg. Similarly, at the trailing edge i corresponds to ﬁf and f+ to §

wblle at surface slope discontinuities 3 corresponds to nf and f+ to

ﬂ¢+. Using this information the following turn parameters are calculated:

o
n_*ny
1 § = cos™1
>
EREES
T W (36
> > ->
s_=n_xT
q_°s_
q =
a_ |5
§-3
q =
T [
My = o
T .

Hetre ¢ is the turning angle, q; i1s the upstream velocity component tangent
to the edge of the discontipuity ard qp 1s the upstream velocity component
rormal to the edge. The vecters T and §_ are illustrated in
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Figure 5. To facilitate consideration of both upper and lower fin surfaces, the
) parameter 8 is introduced which has a value of +1 and -1 on the upper and lower

, surfaces respectively. A turn is an expansion if 89, < O and a compression
if 8 qp > O. -

For an expansion turn the Prandtl-Meyer relations are applied if My > /1.05.
These are given, in differential form, by:

2
-0
dp=__ % (37)
da

do - 1dp
da 52 do

TR TR Y TYTRGW ey Y T mt L TrEeae
Lo

2
an = 2(Ho = h) - q?

Integration of (37) froma = O where qy = qn , P=Pp_, P =p_ to

a = §, using the second order improved Euler method, gives p+,

P+,qpts If 0< My <¥1.05 the flow is isentropically expanded to
~1.o%

Mn using the relations:
‘ X
: 1+ -Ln? (-1
3 p_ 2
1+ by
2 2
1/y
CEE (.L*) (38)
6 P_
e 1/2
210%
where M; = M, and My = /1.05.

Equations (37) are then integrated using p*, p* and q* as the initial
conditions. The choice of My = /1.05 as the lower bound for the direct
application of the Prandtl-Meyer relations is not crucial and any number
slightly greater than unity, which avoids special treatment of the improper
integral when M; = 1, would be satisfactory.
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A compression turn occurs 1f 8¢p > O. In these cases several possible
turning strategies are considered. The domain of application of each strategy,
as a function of normal Mach number, M,, and turning angle, §, is
illustrated in Figure 6. The oblique shock relations are used if there exists

an oblique shock solution with supersonic downstrc:am flow. Such a solution is
permitted 1f M, > 1 and § < §*, where:

ersinZO* - 2coto *
§*% = tan~1 n

739)
| 2 + Mg(y + cos 20%)

[~ 1/2
+ M2‘3+Y+\,
o% = sin-1 (v + 1M o
5 by Mﬁ

-
C=(r +1) |[(v + 1)M4 =203 - v) M2 +y + 9} .

If an oblique shock solution exists, the shock angle is determiaed by solving
the cubic relation: .

X3 + C1X2 + cﬂx + ¢ = 0
e =~ (1+2/M2) -y sin2 (40)
1 n
c, = (2M2 + 1)/M% + [(v + 1)2/4 + (v - 1)/M2]sine
n n n

¢ = cose /Mt
3 n

for the middle root. Hereyx is the sine-squared of the shock angle. With the
shock angle determined, the Rankine-Hugoniot relations can be applied to the
calculated conditions downstream of the shock:

ProavMX - o-D 1/

p__ n
Pr o M /(-1 +2] (41)
o_ n n

,1 - 4Myx - 1)(YMHx + 1)
n n
2
(v +1 )M

ol
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If My > 1 and an oblique shock is not permitted, the downstream flow field
conditions are determined using an empirical procedure which was developed using
the data of Reference l4. An effective shock angle is estimated using the
following relation:

p -"L-A[“_-o*] (42)
eff 2 2

- - - s
A = Max [0,Min[1.94 - .65 (), 3.4 - 1.405G)]]

When § /8% = 2.42, the above equation predicts a normal shock. For further
increases in §/8*, the subsonic flow behind the shock is isentropically
compressed from Mg, the Mach number behind the shock,to a final Mach number or Mf.
The quantity My is determined from the following equation:

Mg = Max [M [1 =¥ + (.13)sin(m¥)],0.]
(43)

v o= (6-2.426%)
Max[.314,Min(.855,1.438-.815M_)]

Downstream conditions are then predicted by applying (38) with M; = Mg and

My = Mg. When My < 1, a shock is not associated with a compression turn

and downstream conditions are predicted by isentropically compressing the normal
flow component to Mg.

The condition My < 0 can occur on either an expansion or compression
turn and indicates that the velocity vector does not cross the edge of the
discontinuity. This situation is treated by isentropically stagnating the flow
component normal to the leading edge using (38) with Mj = M, and My = O.
At the completion of this procedure, qp+ = 0 and the velocity vector is
directed along the edge of the discontinuity.

At the completion of the expansion or compression turning procedures,
P+sP+,qQpn+ have been determined and q¢ is unchanged. The downstreanm
velocity vector, can be constructed from:

-
qd =q7% + 8qp,

+ T > 44

Is+] (44)
> > >
where S¢ =0, XxT

Here the upper sign is used for a compression turn and the lower for an
expansion turn.

2.5 TREATMENT OF INLETS

Provisions are included in the computer program for considering inlets
which are attached to the missile body. The inlet may have an arbitrary shape
provided that the inlet cowling and the missile body together can be represented
by r = b(¢,z), where b(¢,z) is single-valued in ¢ for each z. Also the
cowling lip must be sharp and must lie in a plane perpendicular to the body axis.
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The presence of an inlet is checked at each ¢ plane, at every step. An
inlet is defined to occur on plane m at step k if:

,bk - bk-l - max(lb ] ]b“ll)Az .01 (45)

Y
where bk = pk - _z pk
Zy zm Yy Onm

Here b is the body radius, b,,by are the derivatives of b with respect to
z and ¢. The computational step in which an inlet is detected is completed

using the body radius from the previous step, bg 1, The flow field at a radius
of less than bm is then excluded from the computation by rezoning which places

the body surface of plane m at a radius of b% and leaves the shock location
unaltered. The same number of radial points are retained along plane m and

their distribution is determined by £f(X,Y,Z) of (3). The flow properties at
the new grid point locations are determined from old values by linear
interpolation. At the wall the interpolated properties are interpreted as the
conditions immediately upstream of the inlet lip. The conditions immediately
downstream of the lip are obtained using the local analysis of Section 2.4.4.
The velocity vector is turned through the angle:

" .
n * 4r

§ = cos™l| = (46)
>

EWEH
> -z -0 1% _ 2 ;
Here n_=¢e - _% & + 1( ~u)e and is perpendicular to the plane containing
r b ¢ w b z

the lip tangency vector and the velocity vector 3. To accomplish this turn the
upstream velocity vector is broken into components normal, q, , and parallel
qt, to the lip using n and nb, the inlet surface normals. The resultant
relation are:

¥ =13 xay

q = — (47)

The properties p_, ,q, are known and serve as the initial conditions to the
turn which is accomplished using*the procedure described in Section 2.4.4. A
compression turn is required if q°np < O and an expansion if q nb > 0.

The turning procedure produces p4,0+,qp+ While leaving q¢ unchanged.

The final velocity vector can then be constructed from
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T ) q (48)
} r?j - lﬁ X ﬂ n

in which the plus sign is used for a compression turn and minus sign for
expansion.
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SECTION 3

SPECIAL PROCEDURES

The presence of fin surfaces in the interior of the computational domain
requires the introduction of some special differencing procedures. In addition,
physical considerations have motivated other adjustments to the differencing
used at both fin and interior points located next to the fin edge.

3.1 ALTERATION OF X DIFFERENCING FOR FIN AND INTERIOR POINTS ADJACENT TO
THE FIN TIP. The types of points under consideration in this subsection are A
B,C, of Figure 2. Selection of appropriate schemes for advancing these points
depends on the Mach number normal to the leading edge and the applied leading
edge treatment. Several differencing strategies are available.

Option 0 for the fin points such as A,B and interior points such as C is
similar to the computational algorithm applied elsewhere in the flow field. Fin
points A,B are advanced using the usual fin surface point algorithm. The
MacCormack scheme for advancing point C must be modified since there are two
adjacent sets of flow values (i.e., points A and B) corresponding to the upper
and lower fin surfaces. Point C is advanced in two separate calculations using
first the lower fin surface values at A and then the upper fin surface values at
B. The resulting two conservation vectors are then averaged.

A second strategy, option 1, advances the fin edge points A,B without using
the information at point C, and interior points such as C without recourse to
the information at points A,B. To advance point C using this option, X
differences are taken in the direction away from the fin in both the predictor
and corrector steps. Using one-sided X differences to advance points A,B has
been found to produce unsatisfactory results. Instead, X derivatives calculated
from flow properties at A and C or B and C are set to zero. The computational
algorithm has been constructed with sufficient generality to allow C to be
advanced using A, B , or A and B.

The choice of which option to use in calculating X differences for fin edge
points and adjacent interior points, is primarily dictated by the treatment
emploved at the leading edge. If the leading edge is treated without recourse
to a local znalysis (i.e., leading edge option 0), points A,B,C are advanced
using X differencing option O which allows points off the fin to be influenced
by points on the fin. When a local analysis is used (i.e., leading edge
option 1), the X differencing option 1 is recommended. The rationale for
selecting this combination of options can be seen by considering the leading
edge with an attached shock wave. Here the Mach number normal to the leading
edge is supersonic and the interior points on the fin plane, such as C, should
not be influenced by the presence of the fin. The use of option 1 practically
eliminates all of the upstream influence of the fin. The X derivatives,
calculated on the fin surface, should reflect local surface variations. If
information at point C is used to advance A,B, the X derivatives will reflect
property variations across the shock, and the calculated values will be greatly
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in excess of the local values. The use of option 1l essentially assumes that the

flow properties at the tip are equal to those at the adjacent fin point.

In the case of a subsonic leading edge, a more complicated choice is

necessary. Here compression surfaces are advanced using both X differencing and

leading edge options of 0, while the expansion surfaces are treated with X

differencing and leading edge options of 1 and 2. The interior point adjacent to

the fin tip, C, is advanced using X differencing option 0.

3.2 SUPPRESSION OF Y DERIVATIVES NEAR THE LEADING EDGE. Figure 7

illustrates the calculated surface pressures on a fin in uniform flow. The

calculated results should exhibit a constant pressure downstream of the leading

edge, but in fact overshoot the leading edge value. The excessive pressure

values aft of the leading edge are a consequence of the numerical procedure and

the error becomes more severe as the magnitude of the pressure jump at the

ieading edge increases. Such inaccuracies at the leading edge can have a strong
influence on the total vehicle aerodynamics. The calculated pressure overshoot
at the leading edge may be suppressed by damping the Y derivatives which occur
in (25) and (27) that advance the fin and corner pressures. Such a procedure,
described below, is automatically implemented on leading edges which feature a

pressure rise.

Following the occurance of a leading edge the Y derivatives are set to O

for one step and damped for an additional Kg steps. The damping is
accomplished by multiplying the Y derivatives by a factor 0 £ D, < 1. A

new K is calculated for each leading edge point encountered. The value of Kg

for a leading edge point occuring at (Xn,Ym,Zk) is based on the magnitude
of

k+1 k+1

8p = Pn,m+1 = Ph,m

+
(o5ther - oh)

Here the top and bottom signs apply to the upper and lcwer fin surfaces
respectively, while the k + 1 superscript indicates that this quantity is

evaluated one step following the occurrence of the leading edge. The algorithm

for selecting Kg is:

Kg =l[ Min (éﬂ .5655, 4.28 + .08 AP.)Max (1.33 -2 M, 7>]]
Ad Ad n i

where ([[x]= largest integer not exceeding x.

The Damping factor D, is calculated from:

0 k < (Kg - &)
D, =
(X = k)
1-_8 (K -4)<k<K
4 s - s
36
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Here k is the number of steps following the occurence of the leading edge.

At the body fin junction, the algorithm for predicting Kg at point
(X1,¥g) is given by

K = [.35 <A_p>“] (51)
s Ad

If k < Kg the corner relations for advancing pressure are not used.

Instead, the velocity vector is isentropically turned, first within the body
tangency plane and then within the fin tangency plane, until it is parallel to
the corner.

3.3 APPLICATION OF SMOOTHING TO INTERIOR, BODY, AND FIN POINTS. 1In
computations featuring body separation, and on highly swept wings with subsonic
normal Mach numbers at the leading edge, large vortex structures develop in the
flow field. In such circumstances it is often necessary to smooth the
calculated flow field. This is accomplished by applying a switched Schuman
filterld with a density switch after the completion of each corrector step,
prior to decoding. (The use of the Schuman filter is one way of introducing
artificial viscosity,) For interior points smoothing is applied to the con-
servation vector U, while at the body and fin surfaces it is applied along the
surface to the advanced quantities. The smoothing algorithm is as follows: F

interior (52a)

c C C

- +C c
Ui,j = 0,5+ @ier,5 = 05,50C00172,5 = By, 5 - Timn, i) Cim1y2, 5

>C

=>C -+»C
@B, 501 - TG, 5005, 50172 = B, - 03,5000, 50172

wall

- C - SC c c
Wi,j = Wi,j+ (Fi 561 = Wi,3) Ci,5e1/2 - (Wi,j - Wi,j-1)Ci,j-1/2
fin

> »>C +C +>C +C >C
Hi,j = Hi,j+ (His1,5 = Hi §)Ci+1/2,5 = (Hi,j = Hi-1,5)Ci-1/2,3

corner
> »C »C +C »C e
Jii=di,5 2 Uiger = J4,1C,3e1/2 - 0 = I754 99841705
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In py ; in p: :
where e ) Pi,j
— il
iy $i,] ; Bi,j = 51, ]
b
u ] + v s u + (r5 vy -
Y ; : ]
1, 3j 1,] 1,] HWJ
N _ In pi,j
I
Si,j
- (P, . 4 =0 .)
¢ P, TP : ¢ o= i1 fit e
i+1/2,j (0ie1,5 * °1,5) X i,j*1/2 (pj 341 * 01,30 ¥

Here Cyx,Cy are specified constants. The superscript ¢ indicatecg the )
quantity values following the corrector step. The switched Schuman filter
smooths quantities in conservative form which preserves the numerical scheme's
ability to capture shocks at interior points. Application of the switched
Schuman filter to the advanced wall, body, and fin quantities, rather than to
p,o,u,v,w, ensures that the final flow variables at a surface point satisfy
the flow tangency boundary condition and the total enthalpy constraint, (7).

Smoothing is applied only when requested by the user or at interior points
if the decoded pressure value is negative. In the later case,only the point at
which the negative pressure occurred is smothed using Cij4+1/2, 3 = .25 and Ci, j+1/2=0.
A diagnostic message is also printed indicating that this procedure has been
applied. 1In the sample calculations discussed in Section %4 the user specified

smoothing is applied only where indicated and the automatic smoothing is rarely
invoked.

3.4 BODY CROSSFLOW SEPARATION

At incidences greater than about 1090, the flow on the leeside of a
slender body separates and forms a symmetric vortex pattern. When such a
configuration is treated with an inviscid code, a crossflow shock develops
(illustrated qualitatively on Figure 8) and the surface pressure ahead of the
shock becomes unrealistically low. It has been observed in Ref. 16 that a more
realistic lee side flow pattern may be achieved by prescribing body surface
boundary conditions that facilitate crossflow separation. This section
describes a procedure that may be used with the present code to simulate
cressflow separation in cases where pitch plane symmetry exists. The present
method prescribes the direction of the two body surface streamlines located
nearest to the experimentally observed separation line.

PO

o

AP B

The separation line on the body surface can be specified bv prescribing
b = 65 (2) (53)

The position vector, ;s’ of the point on the separation line in the meridian
plare ¢4 is given by

-

ty = blog, z) e, + z &,
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. -> . .
and the unit vector, Ty, tangent to the separtion line, by

- dr. dr
T =_S /=2 (54)
] dz dz
!
! where
.
: ar st ar.
. r r
—S=_S¢'+_S=('"b +b)& +6'beée +2
dz ¢ s 3z s ¢ z r s ] z
PR d”s
S dz

The specific form of (53), used in the present program, is the following
correlation of experimental data for circular bodies (Reference 17):

¢ = 2.23 {%.[z/b(z) - 3.]tana} -.23 (53a)
s

for z > (.450/tan a + 3)b(z).

Noting that the crossflow velocity is the projection of the velocity vector
onto the z = constant plane, and that the tangent to the body in the crossflow
plane is (by/b) &+ 3‘, the ratio of the total velocity to the
crossflow velocity is given by

. [(b¢/b) e+ e¢] « g v, (55)

q\/(b"/b)z + 1 V2E_ - h) [ /012 + 1]

At the separation point, the surface velocity is prescribed to be in the
direction of T4 and is given by (54). This is enforced by solving (55) for
Vo using ¥ = ¥4, where ¢g is determined from:

i f(b¢/b) T+ zo] . ¥
s {6 /)2 + 1]1/2
¢

] ]
(b¢/b) (¢s b + bz) AU b (56)

¢

2 2 2 1/2
{Bb¢/b) + 1] [(0's by + by) +6'g b + ﬁ}

Since the present method does not explicitly track the separation point, (56)
cannot be imposed directly because separation generally occurs between
computational points. It is, therefore, assumed that the crossflow velocity
ratio, ¢, varies smoothly on the body surface and that the separation affects
only the two body points adjacent to the separation point.

Consider the case where the separation point lies between (X1, Yy) and
(X1, Yme1). The required ¥'s at (Xy, Y,) and (Xy, Yp4q) are
determined using the following linear interpolations:

39
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Yim = ¥im-1* (bs - wl,m—1> (°1,m - ¢l,m-l)/(°s - °1,m—1)

$1omel = V1 me2 v (bg = ¥y qe2) (07 el = 61 me2)/ (0 T 4 pe2)

Here ¥1 m-1 and V] p+2 are calculated by evaluating (56) using the flow
properties at points (Xy, Yp-1) and (X1, Yp+o) respectively, To ensure

that pressure and density behave smoothly near the separation point, s and p at
points (Xy, Yp) and (X1, Yp+1) are determined by linear interpolaticn:

Promei = Plomel * (PLome2 = Piomel) (@1 mej = ¢1,m=12/(01 me2 = 1 00-1)
(58)

1,3 = S1,m1 * (51 ,me2 = S ;1) (01 ,mej = 61 ,m-1)/(01 ,me2 = 01 ,m-1)

where: j=1,2

At the end of each computational step the advanced quantities at points (X7,
Y,) and (X, Y_,1) are decoded using (17) which enforces the tangency
boundary conditions and the correct stagnaticn enthalpy.

Application of (55), (56), (57) and (58) on a circular body produces a vertex in
the leeward flow field. Crossflow velocities which are positive on the
windward side of the body become negative leeward of the separation point. When
the €lcow fleld vortex becomes sufficiently large, an interval of positive
surface crossflow velocities (i.e., a secondary separation) develops between the
separation point and the leeward symmetry plane. This interval is unstable and,
shortly after such a region develops, the calculation fails unless the body
smoothing opticn is applied.
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SECTION &

COMPARISON OF CALCULATION AND EXPERIMENT

This section presents comparisons of calculation and experiment using the
algorithms outlined in Sectiorms 2 and 3. A description of the computer code,
listing and set of user's instructions can be found in Ref. 11. The range of
cases covered in this section includes body alone with and without crossflow
separation, body-fin configurations with supersonic, subsonic and transonic
leading edges and a body-wing-tail configuration with and without tail
deflection. The input variables used to execute each run are listed in
Ref. 11. Mgsi o{ the cases presented in this section have been reported
previouslyl »18,19 However, different versions of the numerical method were
used in these references and in some instances the results may differ from those
shown in this report.

All the cases featured in this report have bodies with pointed nose tips.
The initial data plane is located near the tip and the flow field on this plane
is generated using a method described in Ref 1l1. This procedure provides an
estimate for the flow field about a cone tangent to the body at the starting
plane by integrating one~dimensional conical equations. The resulting flow
field is approximate except at zero incidence. Experience suggests that the
calculations described in this section are relatively insensitive to the flow
field used at the starting plane.

4.1 BODY ALONE. A body alone calculation was carried out with and without
crossflow separation on a tangent ogive cylinder of nose fineness 3, and
afterbody length of 10 calibers. The angle of incidence was 15° and the free
stream Mach number was 3. To minimize the computational cost, the runs were
completed in three steps. The first part covered Z/D < 2 and used a uniform
11 X 13 mesh* while the second and third used a 31 x 37 mesh. The third section
covered Z/D > 5 and featured mesh clustering in the r direction. In the
crossflow separation run, the separation started at Z/D = 2. As shown in Fig.
9, application of the crossflow separation brings the flow field into reasonable
qualitative agreement with the measurements of Oberkampfzo. Calculated
surface pressures with and without crossflow separation are compared in
Fig. 10. 1In both cases the ccmputed pressure is considerably lower than
experimental in the vicinity of separation. The pressure rise on the leeward
side of the body in the crossflow separation case is triggered by separation,
while in the other case it is due to the crossflow shock which develops on the
leeside of the body.

*The notation (N X M) irdicates N plares in the r direction and M planes in tne
¢ direction.
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4.2  CONFIGURATIONS WITH SUPERSONIC LLADING CDGES. In Ref. 21 a

, tangent ogilve bodv, equipped with tail fins cr several different planforms, is
- tested in supersonic flow. The fins feature surface slope discontinuities at
various locaticns aleng the surface. The free stream Mach number is
sufficiently large to allow an attached shock solution at the fin leading edge
in aimost all cases. Numerical results have been compared to experimertally
measured surface pressures taken at Mach 3.7 for configurations featuring
clipped delta and cranked tail fins.

Calculations for these cases were made in two sections. A .uniform 13 X 13
mesh was used to advance the calculation to an axial staticn slightly forward of
the tail leading edge. The flow field was then rezoned to a uniform 40 X 37
mesh for the computations over the tail surfaces. The leading edges were
treated using option 1 (i.e., by applving the local analysis) and X differencing
3 option 1 was used until the fin tip was encountered. Along the fin tip the
adjacent interior point was advanced using optior O as was the fin tip point on._
the compression (i.e., lower) side of the fin. The fin tip point on the
expansion surface of the fin was advanced using cption 1.

Laeae aia xin)

Calculated and measured fin surface pressures are compared for the cranked
and clipped delta fin configurations in the "+'" and "X" roll orientation in
Figs. 11 to 15. All figures show reasonable agreement between calculation and
experiment. The scatter in the experimental data is a result of using i
experimental measurements from repeated runs. On fin surfaces which festure '
strong leading edge shocks, the predicted results tend to be lower than
experimental. Also, the pressures are not accurately predicted along the
body-fin junction. The body boundary layer and the fin leading edge shock
interaccion, presumably have an influence on the corner and account for much of
this discrepancy. On fin surfaces which have a weak leading edge shock or
expansion, the predicted and measured- fin tip pressure profiles are im good
agreement. However, the pressures along the corner are underpredicted. Cver
the entire span, calculated pressures on the trailing edge panel tend to be less
than measured, probably reflecting the existence of a thick boundary laver or
separation.

Y

A flow field vector, pressure arnd density contour plots, in a crossflcw
plane upstream of the trailing edge, are shown in Fig. 16. There are no
experimental data available for comparison; however, the results appear to be
qualitatively correct and show a leading edge shock propagating inte the flow
field from all three fins.

The normal force and pitching mement computations for an airplane tvpe
configuration at Mach 2 are shown on Fig. 17 in comparison to experimental data
of Ref. 22. This case features attached shocks on the wing ard tail surfaces.
The calculation was carried out using a uniform 13 X 13 mesh forward of the wing
and a uniform 19 X 19 mesh over the remainder of the bodv. The leading edge and X
differencing options were set to 1. To prevent the flow from becuming subsenic
along the wing-body juncticn, the leading edge turning angle at this location
was damped by setting CT = .25 for wing compression and tail surfaces and Ct = .5
on the wing expansion surface. The computed and measured normal force and
pitching moment coefficients for body-wing and bodv-wing-tail configurationms at an
incidence of 109 are in good agreement. The computed crossflow field at an axial
etation just upstream of the wing trailinz edse and tail section are iliustrated on
Fig. 183.
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4.3 CONFIGURATIONS WITH TRANSONIC LEADING EDGES. This section
focuses on cases where the Mach number normal to the leading edge is near unity
and is too small to allow an attached leading edge shock. Under these
conditions the local analysis at the leading edge is approximate.

The wind tunnel tests of Ref. l4 offer an opportunity to compare
calculation and experiment for the swept wing configuration depicted in
Fig. 19. Measurements were taken on two wings with the same planform but
different thicknesses. The calculations were performed at Mach numbers of 2.5
and 4.5, at incidences of 2° and 6° using a uniform 15 X 13 mesh, and with
leading edge and X differencing options set to 1. The wing section of the
configuration was also rerun on a finer 25 X 25 mesh for the thin wing
configuration at an incidence of 6° at both Mach numbers. A comparison of
calculated and measured wing and body surface pressures is presented in Figs. 19
to 24. The calculated crossflow field of the thin wing configuration at a« =
60 is presented in Figs. 25 and 26 for Mach numbers of 4.5 and 2.5
respectively. In each case the crossflow velocity vectors, pressure and density
contours are illustrated at axial stations slightly forward of the trailing edge
point of the wing-body junction.

Another example of a configuration with transonic leading edges for which
experimental data were available, is illustrated in Figs. 27 to 30. 1In Ref. 23,
pressure measurements are provided on wing and body surfaces for both "+'" and
"X" roll orientations. Calculations were preformed at Mach 2.7 at 100
incidence for both roll orientations. A uniform 11 X 13 mesh was used forward
of the wing and a uniform 18 X 21 mesh for the remainder. Leading edge and X
differencing options were set to 1. Calculated and measured fin surface
pressures are compared in Figs. 27 and 28 which represent the "+" and "X" roll
orientations respectively. In both cases the leading edge points near the body
feature detached shocks, while those further outboard on the wings have attached
shocks. Figs. 29 and 30 compare calculated and measured body surface pressures
for the "+" and "X" roll orientations respectively. The calculated crossflow
fields forward and aft of the trailing edge are illustrated in Figs. 31 and 32
for both of these orientations.

The final transonic leading edge example considered is a swept wing model
depicted in Fig. 33. The experimental data are taken from Ref. 24 and include
pressure measurements on the wing and body surfaces. Calculations have been
made at Mach numbers of 2.3 and 2.96 at incidences of 8.8° and 8.6°
respectively. A uniform 13 X 13 mesh was applied to the nose region (z < 5)
while the remainder of the body was calculated using an 18 X 19 mesh. Option 1
was used for the leading edge and for the X differencing. Wing surface pressure
results are compared to experimental values in Figs. 33 and 34 for Mach numbers
of 2.3 and 2.96 respectively. Calculated and measured body surface pressures
are shown in Figs. 35 and 36 and the computed crossflow plane flow fields at an
axial station upstream of the trailing edge are illustrated in Figs. 37 and 38.

A comparison of calculated and measured fin surface pressures for all three
configurations indicates that on expansion surfaces agreement is reasonably good
except at the combination of low Mach number and high incidence conditions,
where experimental values are smaller than the predicted ones. On compression
surfaces best agreement was obtained for the swept configuration of Ref. 14 (see
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Figs. 19-22). This 1s to be expected since these data were used to generate the
semi-empirical leading edge relation. Reasonable agreement was obtained for the
other two cases (i.e., Figs. 27, 28 and 33, 34) which lends credence to the
semi-empirical leading edge analysis. The calculated body surface pressures
(see Figs. 23, 24, 29, 30, 35, 36) also feature correct behavior in the presence
of the wing. On the windward side of the body, surface pressure increases
generated by the presence of the wing, are correctly accounted for, although the
location of the predicted pressure peak, in some cases, is downstream of the
measured one. On the leeside of the body the calculated body surface pressure
decreases appropriately in the vicinity of the wing, and there is no evidence of
a discrepancy between the locations of the predicted and measured pressure
minimums. In some cases (i.e., Fig. 23, 24) there is a substantial difference
between predicted and measured pressure levels on the leeside of the body. This
is, most likely, attributable to the leeside boundary layer influence.

4.4 CONFIGURATIONS WITH SUBSONIC LEADING EDGES. The cases examined in
this section feature highly swept wings having leading edge normal Mach numbers
that are less than unity. Under these conditions, the flow rounding the edge of
the wing separates and rolls up to form a vortex which, in turn, induces a large
suction on the lee surface of the wing. Previous studies (e.g., Ref. 25) have
indicated that numerical solutions to Euler's equations exhibit this type of
flcw field for wings with subsonic leading edges.

The first case considered is the swept wing shown in Fig. 39. Experimental
surface pressures are taken from Ref. 26, and the comparison is shown for a Mach
number of 2.86 and an incidence of 10.3°. The current computational procedure
requires the presence of a missile body. Hence, it was necessary to add to the
wing-alone chape a small circular centerbody of a diameter equal to the wing
thickness. The nose tip for this body consisted of a cone of a half angle of
5. The presence of this center body invalidates a surface pressure
comparison near the center of the wing. However, farther along the span, this
wing should provide a meaningful comparison of experiment and calculation. The
computation was carried out with a uniform 19 X 19 mesh. Smoothing was applied
to the interier of the flow field and also to the wing and leeward body
surfaces. On the windward surface, option 0 was used for the leading edge and
the X differencing while on the leeward surface the respective options were 2
and 1. The interior point, adjacent to the wing tip, was advanced using X
differencing option 0. The surface slope discontinuity jump was suppressed for
z < 10.6. A comparison of the calculated and measured surface pressures on
the upper and lower wing surfaces is presented in Fig. 39. The leeside pressure
profile exhibits the expected suction near the outer tip. On the compression
surface the predicted pressures tend to be lower than experimental. The
crossflow velocity vectors and pressure and density contours are plotted on Fig.
40 at an axial station just upstream of the trailing edge. The expected leeside
vortex is evident.

In Fig. 41 normal force and center of pressure prediction for two
body-wing-tail configurations are compared to experimental data of Ref. 27.
Calculations for these bodies have been carried out at a free stream Mach number
of 2.86 and incidences of 6° and 129, with and without tail deflection. The
computations were completed in three sections: upstream of the wing, wing
section, and the tail secticn. The respective mesh sizes were 13 X 13, 19 X 25,
and 19 X 25, The effect of the horizontal tail deflection of -209 is shown in
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Fig. 42. The deflected tail case was simulated by decreasing the slope angle, v ,
on the compression surface by tan(20°) and increasing it on the expansion surface

by the same amount. The wing featured subscnic leading edges, and leading edge
option Q0 was applied on compression surfaces and option 2 on expansion surfaces.

The X differencing option 0 was used on the compression surface and on the interior
point adjacent to the fin tip, while option 1 was used on the expansion surface.

The wing-bodv junction turn was damped by setting Cy = .5 for both the wing and

tail surfaces. For the section of the calculation which covered the wing surfaces,
interior points were smoothed using Cy = Cy = .2 while the expansion wing surface
and body surface leeward of the wing was smoothed using Cj it+1/2 = +2. For section
3 of the calculation which covered the tail, leading edge and X differencing options
were set to 1 and the interior flow field was smoothed using Cy = Cy = .3. The
calculated normal force and center of pressure are in reasonab}e agreement with
experiment for both deflected and undeflected tail surfaces. The crossflow velocity
vectors are illustrated in Fig. 43 for crossflow planes aft of the wing trailing
edge, forwards of the tail leading edge and aft of the tail trailing edge.
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SECTION 5

CONCLUDING REMARKS

A numerical method has been developed which predicts the inviscid
supersonic flow field about finned configurations of engineering interest. The
computational requirements are generally modest. All of the cases demonstrated
in this report required less than two minutes on a CDC 7600 and used between
110k and 170k core storage (octal). The present study differs from previous
methods by treating the fin and body geometries separately. Simple
transformations, based on the body alone geometry, are used to map the physical
plane into the computational one. A local analysis is applied to fin edge which
facilitates the use of coarse computational grids. At present a thin fin
approximation is employed which limits the applicability of the computational
procedure to relatively thin fins with sharp leading edges. With this
formulation it is possible to treat a wide variety of configurations of
engineering interest which may contain an arbitrary number of fins at small
angles of deflection, camber or dihedral. By appropriate modeling at wing tips
and at estimated body separation points, it appears feasible to simulate flow
field vortices.

Special procedures are used to analyze the flow on leading and trailing
edges. This treatment is dependent on the Mach number of the flow normal to the
leading edge. The treatment of the supersonic case is straight forward since
the local analysis is exact. In the subsonic and transonic cases the local
analysis is empirical and several options are available for treating fin leading
edges. Here, experience with similar cases for which there is experimental data
may improve results.

The computational procedure has been applied to a number of different
configurations. Good agreement has been obtained between experiment and
calculation, particularly with respect to aerodynamic coefficients. The
calculated pressure is generally in reasonable agreement with experiment. Here
deficiencies are more likely to occur near body-fin junctions and close to the
leading edges on wings with detached shocks. The pressure gradients on the wing
surfaces reflect the correct variation with leading edge Mach number, even on
the leeward side of the wing in subsonic flow. Here the appropriate suction
appears on the fin surface near to the tip. Vector and pressure contour plots
of the flow field have also been presented for a number of cases. Although
there is no experimental information for direct comparison, the flow field
exhibits the expected structures. For configurations with supersonic leading
edges, shock waves can be seen propagating off the edges into the flow field,
while in the subsonic case, a large leeside vortex is seen to develop. In
several cases normal force and pitching moment coefficients have been calculated
and compared to experiment. Good agreement has been obtained even for
configurations with deflected tails.

-
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UPPER SURFACE COMPRESSION
LOWER SURFACE EXPANSION
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Vectors associated with compression and expansion turns
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Figure 11.

Calculated and measured fin surface pressures on a clipped
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M= 3.7, Ref. 21.
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Figure 19. Calculated and measured fin surface pressures on the thin swept
wing configuration of Ref. 14 at M = 4.5, o = 2° and 6°
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Figure 20. Calculated and measured fin surface pressures on a thick swept
wing configuration of Ref. 14 at M = 4.5, u = 2° and 6°
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Calculated and measured fin surface pressures on a thin swept
wing configuration of Ref. 14 at M = 2,5, o = 2° and 6°
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Figure 23. Calculated and measured bodv surface pressures on the thick swept
wing configuration of Ref. 14 at M = 2.5, o = 29 and 6°
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Figure 24. Calculated and measured body surface pressures on the thick swept

wing configuration of Ref. 14 at M = 4.5, o = 29 and &°
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Figure 29. Calculated and measured body surface pressures on the delta

wing configuration of Ref. 23, in the '"+" roll position at
M=2.7, a = 10°
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Figure 35. Calculated and measured body surface pressures on the swept

wing configuration of Ref. 24 at M = 2.3 and T = 8.80,
(Zero reference shifted by 1.0 for each successive curve.)
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Figure 36. Calculated and measured body surface pressures on the swept
wing configuraticns of Ref. 24 at M = 2.96 and 1 = 8.69,
(Zero reference shifted bv 1.0 for each successive curve.)
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Figure 41. Calculated and measured normal force coefficient and center

of pressure for two wing-bodv-tail configurations of Ref. 27
at o = 69 and 129, M = 2.86 and tail undeflected
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NOMENCLATURE

speed of sound

body surface radial location (see Figure 1)

bow shock location surface radial location (see Figure 1)
filter constants for the X and Y directions respectively
unit vectors in the r,$,z directions

enthalpy

stagnation enthalpy
1/3(X,¥)/3(r,8)=1/Xpb,

fin edge radial location
number of ¢ planes
fin surface normal vector. Vectors on both upper

and lower fin surfaces. Vectors on both surfaces have
positive ¢ components.

bodv surface normal vector See
Figure
vector directed along body fin junction 3
97
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NOMENCLATURE (Cont.)

WA TR

8 turning angle of normal flow component

§* maximum possible turning angle with an attached shock

T vector tangent to fin leading edge (see Figure 5)

] angle between the fin surface tangent plane and the fin

plane in the r direction
v angle between the fin surface tangent plane and the fin

plane in the z direction

) density

o(r,z) fin surface function (see Figure 2)

o* maximum attached shock angle

¢f angular orientatien of fin plane (see Figure 2)

¢o angle between adjacent symmmetry planes (if such planes
exist)

¢, ¢, for symmetric problems and 2r otherwise

Subscripts

w free stream conditions
- downstream of an edge or surface discontinuity

(see Figure 5)

+ upstream of an edge or surface discontinuity

(see Figure 5)
4

w wall
£ fin

98
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NOMENCLATURE (Cont.)

fin surface normal vector upstream of a
discontinuity

vectors used in calculating compression or expansion

jumps (see Figure 5)

number of r planes

np

pressure

velocity vector

velocity component normal to a discontinuity
velocity component tangent to a discontinuity
cylindrical coordinates (see Figure 1)

entropy
slip plane normal vector (see Figure 3)

edge direction (see Figure 3)
velccity components (see Figure 1)
computational coordinates
vire ) + u

r
angle of attack

ratio of specific heats
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APPENDIX A
CHARACTERISTIC ANALYSIS OF THE FIN SURFACE

This Appendix presents a derivation of the equations used for advancing the
fin surface points and the point on the fin-body junction. The analysis does
not utilize the thin fin approximation and is valid for any gas ir thermodynamic
equilibrium.

The upper and lower fin surfaces are each independently described by

= 0(r,z) + ¢g. On the upper surface, the flow region lies in ¢ > o(r,z) +
¢f while, on the lower surface, the flcw region lies in ¢ < ¢ (r, z) + $¢g. On
each fin surface the inviscid boundary condition (22) must “be satisfied. This
constraint, in conjunction with the full system of equations (9) overspecifies
the problem. The proper number of independent equations necessary for advancing
the solution along the fin surfaces is obtained by combining the admissible
characteristic compatibility conditions associated with (9), with (22) on the
fin surface.

The two families of characteristics associated with (9) are stream surfaces
and Mach surfaces. Each of these families provide an infinite number of
surfaces on which the characteristic relations can be written. Except when
considering points on the body-fin junction attention is restricted to planes
shown in Figure A-l. The selected stream surface plane ccincides with the fin
surface and the chosen Mach surfaces intersect the fin surface along a constant
z line. Two independent characteristic compatibility conditions are satisfied
on the stream surface. These relations represent the propagation of
disturbances for increasing z along the fin surface. Since the flow domain lies
on just one side of each fin surface, only the compatibility cordition for the
Mach surface lying within the flow domain for z < z, is consiaered
admissible. This surface represents the propagatlon of disturbances from the
interior points to the fin boundary for increasing z. The other Mach surface,
which lies outside of the flow domain for z < z,, is disregarded and
replaced by the boundary condition (22). Application of admissible
charazteristic compatability conditions at the boundaries in finite difference
calculations was first suggested by Kentzerl2. This approach was used in
Reference 10 to develop :he equations for advancing body surface and shock
surface points (17) and {19).

For the characteristic analxﬁis of a fin surface, it is convenient to
temporarily introduce an additioggl transformation: :

L =2 =2

X(r,9,2) (A.1)

3
]
]
I}

£ =E(X,Y,2) =4 - g - d¢

A-1
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Note that in the n,§ ,§ coordinates, n = 0 corresponds to the body
alone surface and § = 0 corresponds to the fin surface. A quasi-linear system
equivalent to (22) is obtained by expanding (5) in terms of the dependent
variables

Q = (p,u,v,w)t,

introducing the change of variables (A.1l), and left multiplying the result by
the non-singular matrix:

-
i 1 0 0 0
-w 1 0 0
(L\-
-u 0 1 0
-v 0 0 1 .

The result is given by

[11]

L(Q) AER.+:B?.2+G:_§—.1.<D(E-F)=0
T

14 an

b =0 .B.E s = .a_g + aﬁg .1- i .a_..q
-0 [ e o ) e i) ¥ e [
c=@{z[a_bl]+z [ﬂ]+ lg [?_G]}
z|3Q r |3Q r ¢ {3Q

and [ig] , Eii] s [ig] are the Jacobian matrices of U, F, and G,
3Q 3Q 3Q

respectively,taken with respect to the components of Q and subject to the energy

equation (7). Explicit expressions for the matrices A, B, and § can be obtained

directly from (A.4), given below. Note that the terms n,, etc. are given

using (A.1) by

(A.2)

where*

Ny, = X,y Np = Xy, Ny = Xy

Eg= 0g Ep =8 B = L.

(A.3)

The pertinent facts concerning the theory of characteristics associated with
system of the type (A.2) will be briefly reviewed here; for a more detailed
explanation see Reference 28, pp. 577-399. The characteristic matrix associated
with (A.2) is

Ak (Xl, Ao, X3) AI/'A+XQCB+X3¢

(A.5)

* In_terms of the transformation r, ¢, t
-~ 1 ~r -~ o~
Usurmh F=rimin, T4+ C0)6); 6

r

Te &y 3
37l (g U+ E et + (E

/£)G)

~

E=E7h 0 = niBg - Epny
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s (l/a2 - K/p) pA, - uokK pA3/r = vokK pA; - wOK |
Al 0 0 <X}
1\2 pC 0 0 = A
Aj/p 0 pC 0
- -
where

O'-Alw+A2u+A3v/r,A1 =Xl+an2+EzA3, 1

Apg =gy +8pr3, Ay =medy + g, A3,
and pK = (3p/3h)p, (K = -1/h for a perfect gas).

A surface ¥ .(§ ,n,t) = 0 is characteristic at a point if its normal
at the point satisfies the characteristic condition

HO 1, g, A3) & det [A*aL, 2, A3)]= 0

where Ay = 32, A2 = iﬁ., and A3 = 20, The characteristic conoid i
I3 an 3t

with vertex 0 = (£ ,, Ny, §5) is the envelope of all characteristic

surfaces through 0. The surface of the characteristic conoid is generated by

curves, called rays or bticharacteristics which are the lines of contact between

the characteristic surfaces and the conoid they envelope. These curves, or

rays, are given by the ordinary differential equations
4z - 3H dX - 34  dY . 3H (A.6)
dS 3i; dS drp dS 34

where S is a parameter. Each ray through 0 is determined by selecting real
values for Ao and A3 and determining A7 by satisfying the characteristic
condition (A.4) at 0. The characteristic condition (A.4) for the system of
equations (A.2) is given by

H = H]_ ( A],9 )‘2’ X3) HZ (A]_, AZ: X3) =0
where

3.2
Hi(A1, Ao, A3) = &J%_ and (A.7)
a

2 2 2 2 2 2
HyAq, Ag, A3) =0 = (A +A 5 +A 3/r ) a
The ray cone therefore has two sheets, one corresponding to H; = 0 and one
corresponding to H, = 0. The rays generating the sheet corresponding to

H = 0 are given, using (A.5), by

dn . A/w, 9E = B/w
f(4 dg

A-3
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where INCMERS aHl/aA2 = Az grad n*q, —1 = B = grad £°q .

Hence the sheet corresponding to Hl = 0 is a degenerate cone consisting of a
single ray through 0. This ray corresponds in the physical space (z,,r) to a
streamline. The sheet corresponding to H2 = 0 is a true cone which

corresponds in physical space to the Mach cone. For each characteristic
surface, the lines of contact with the cone (bicharacteristic rays) have slopes
given by:

dan = (aH /s aH /ax ), & = (3aH /axr 3H _/ox .
3 ( 2/ 2)/( 2/ 1) ac ( 2/ 3)/( H2/ 1) (4.8)

where

aH /3 = 2(ow - a2 A )
2 1 1

aff /axn =2 [G(grad n'Z) -a2 (An +A_n+1 An )]
202 1z 2 r 2 3 ¢ (A.8a)

aH _/ax =2[a<grada-3)-a2 (Mg +4_ 8 +1 Acf )].
23 'z "2°r 72 3°¢

On each characteristic surface, the system (A.2) reduces to one or more scalar
compatibiiitv conditions given by

I L(Q) = 0 (A.9)

>

where & is a left null vector of A* associated with the characteristic
condition defining the characteristic surface. For the system (A.2), the left
null vectors can be obtained from (A.4) bv inspection. Corresponding to H, = 0
(i.e., o = 0) there are two independent left null vectors 1

.
£1 = (0,w,u,v)

(A.10)
A
T =¢0,0, 3, )
2 ’ ? T » 2
Corresponding to Hy = 0, the left null vector is given by
>
23 = (p0, wKC = A, uKT ~ Ap, VKO = pA3/1)
(A.11)

To determine the left null vectors, bicharacteristic rays, etc., values of
A, A2, A3 must be specified. The characteristic conditions Hy = Hp = 0
provide, for each family, one relation between A1, A9, A3, OSince

both M and H, are homogeneous of degree 2 in Ay, A, and Ag, it

follows that H| = 0 and Hy = O each describes 2 one parameter families of
characteristic surfaces.

ki
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As previously indicated, attention is restricted to characteristic surfaces
which are either tangent to the fin surface or intersect the fin surface along
{ =¢ . Hence Aj is set to zero and since wa>o the values of
(A{/x3) on & = 0, which satisfy Eq. (A.4), are given by

—~2 ) =-3B (multiplicity of 2) (H = 0)
k3 o w 1

A 2 4 A
1) L (g2t 2 aB) Ay (Hy = 0) (A.12)
Ay 2 2
i w = a
where B = /ul/grad E2 - a2z + €¢/r)
r

and A3 is any non zero value. Since on the fin surface B = 0, the
characteristic surface corresponding to Hl = 0 withAy = 0 is tangent to

the fin surface. Since these characteristic surfaces do not leave the flow
domain, the associated compatability conditions rl * L(Q) = 0 and fz

* L(Q) = 0 (with A9 = 0) are admissible on £€=0. The final form of the
associated compatibility equations used in the present work are given by (23)
(corresponding to Il) and (24) (corresponding to £7). These can be

obtained by direct substitution of (A.10) into (A.9) with Ay = 0 and

considerable manipulation using the boundary condition (20). In (23), the entropy s

is introduced using the thermodynamic relation

dp - pdh = - pTds
where f'is the temperature. Note that the derivative.s% and.E% , appearing
in these equations, are the same as 2 and 5%" respectively, on £=0.

For Ay = 0, there are two distinct characteristic surfaces (and left
null vectors) associtated with H2 = 0 corresponding to the values of

A1/x3 given by (A.12). To determine the appropriate choice of sign in
(A.12), the slopes of the associated bicharacteristic rays through a point
(¢,n,0) are considered. Using (A.8) and (A.12) yields

_dj_=dE/dS= -a<aezi3 )
dc dr/ds (w2 -a2)

Since w>a>o andt3>w,Ez’, it follows that the bicharacteristics are as

indicated in Figure A.l. For an upper fin surface, the flow region lies in

£>0 and, therefore, the compatibility condition corresponding to the upper

sign in (A.12) is the appropriate choice. Analogously, for a lower fin surface
the lower sign is the appropriate choice. For both fin surfaces, the
compatibility condition (A.9) on& = 0 with I$I3 is given by (24). This

is obtained, after considerable manipulation, by evaluating (A.9) on§ =0,

H
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using the toundary condition (22) with Ay =0, A3 # 0, and A1/23
defined by (A.12). Also, 3_3 is replaced by 3/an = Y (3/3Y)
n

where YE = Y¢Xr/(Xr +Gr X);Cf-, (A.l) and (l)o

The above analysis does not apply to the points (¢,0,0) along the fin-body
junction. These point are special in that they are boundary corners where the
flow domain lies in the sector between the body surface and the fin upper (or
lower surface: viz., the quarter plane {n > 0, § > 0} or {n > 0, § < 0}).

The fin-body junction is modeled in a heuristic manner which leads to a separate
set of equations for these points. Along the junction, both (22) and (13) are
satisfied which implies that the junction is a streamline. It is also assumed
that the junction is not a vortical singularity (i.e., the entropy, pressure,
etc. are single valued along the junction). Under these circumstances, the
compatibility condition (A.9) with ¥ = fl implies that s 1s constant along

the junction. Therefore, because of (22) and (13), onlv one other independent
relation is needed to determine all the flow variables at the junction.

Of the two remaining families of compatibility conditions, only those
corresponding to 33 (i.e., associated with H2 = 0) are considered. From
these compatability conditions an equation can be obtained for advancing the
pressure p along the junction which is independent of (22), (13) and s =
constant. On the other hand, it can be shown that the compatibility conditions
corresponding to £2 for any choice of A9 and A3 (with Xp + X3 # 0) is
not independent of (22) and (13) when b, = 0, = 0 (a case that we do not
want to exclude). The specific choice of a compatibility condition from the
H2 = 0 family, is dictated by the fact that the flow domain is a sector and
only those compatibility conditions associated with bicharacteristic rays
through (¢,0,0) which lie in the appropriate sector for decreasing §{ should
be considered. Among the bicharacteristics associated with Hy = 0 satisfying
this condition there appears to be no particularly convenient choice. One
possiblity is the bicharacteristic lying on the fin surface at (¢ ,0,0); i.e.,
9g/3¢ = 0 at (£,0,0). From (A.8), this bicharacteristic satisfies
3Hy/3x3 = 0. Simultaneous solution of Hp = 0 and 3Ha/3r3 = O,
using (22) and (13), ylelds two possibilities given by

*
At =adpf a(R, - T,) +/RE A

(A.13)

2 2 2 *
Azp = Ap(w -2 ) T+a n,&,+a&, B8/ /Rl/M

*
where 8 = (SR - T2) (w2 - a2) + a2 (Rn 2 - 2E n + & 2),
z zz z
R = [grad £|?, s = | grad n|2, T = grad n* grad §, Q = R(w2 - a2) +¢ 2 a2,
z

and Ay # 0. To determine the appropriate choice to sign in (A.13), we
consider the shape of the bicharacteristic rays determined by (A.13). It
follows from (A.8) and (A.13) using (22) and (13), that at (¢,0,0)

: *
dn/dt = -a [a(Rn, ~ TE,) +YR B J/a .

A~6
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Since w>a>o and R®T?, it follows that vEB*> alR, - T, |

and thus the bicharacteristics corresponding to (A.13) are as indicated in
Figure A-2. Therefore for both the upper and lower fin surfaces the upper sign
in (A.13) is the appropriate choice. The form of the compatibility condition
(A.9) on (§4,0,0) with & = £3 and Ay, A3 defined by (A.13) 1s independent

of XA, and given by (24a). Another possibility is to consider the

compatibility condition associated with bicharacteristic ray lying on the body
surface, n = 0; i{.e., 33/3f = 0 at (£,0,0). These bicharacteristics

satisfy 3H2/312 = H2 = 0 which give A; and A, in terms of an arbitrary A3 #¥ 0
expressed by (A.13) with Ay and A3, 52 and n,, and R and S interchanged. To determine
the sign, d§/d& which is given by the right hand side of (A.l4) is

considered with the above interchanges. The corresponding bicharacteristics are
indicated in Fig. A~2. Hence the appropriate choice of sign is the upper and
lower sign for the upper and lower surface junctions, respectively. This
compatibility condition, evaluated at the junction, is given by (24b).

T . . Do e e e —————————
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APPENDIX B
CALCULATION OF AERODYNAMIC COEFFICIENTS

The aerodynamic forces acting on a missile configuration are determined by
numerically integrating the computed fin and body surface pressure distributions.
The sign convertions for the components of the aerodynamic force and moment are
illustrated in Fig. B-l. The force and moments are computed assuming that the
base pressure is equal to py, and that the moments are taken about the point
z = z. on the z axis, as is shown in Fig. B-1. The derivatives with respect
to z of the force components are given by:

Fz : & o
r4
oy [Cramas Do [ nee
i= ¢i n=1 ry
N¢ ¢? Ns ron
'g':_n - 2 f Pp(b cosé + by sing)do - 2 f Pplsindy + (rop)cosdeldr (B-2)
=1 “a n=l T4
¢ n
1
N¢ ¢2 Ng Ton
__Xg: = Z f P (bycosd - b sing)de +Z snf py[cosde - (ro )sing.ldr
i=1 “a n=1 Ty
05 n (B-3)
N¢ b
Mz _ _ i
o ‘\'_:1 jj Py, bbydd
?1
Ng Ton
- Sn;/. pplcosdglecosd, - (rop)sind.]+singg[sing; + (ro )cosor] Jrdr
n=1 Ti, (B~4)
3F A i ~n
%ﬁ = (z, - 2z) a_zl + Z _/ Py b2b,, sin¢d¢+2 *n f pp sindg(ro )rdr  (B-5)
i=l Ya n=1 1
b4 n
B-1
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N

s r

3

N
£ 'b?_ on
g_l;ix = (z - z¢) Oin + Z f Py bZb, cos¢ db + Z Sn f Ppcosd g(ro,)rdr (B-6)
i=1 “a
¢1

n=1 Ti,

where Ppb = P = Pwo> ¢s = ¢ on fin surface, d¢ = ¢ of £fin plane

The first term in each case represents the body contribution while the second,
that of the fins. In the above equations, Ns is the number of fin surfaces and
Nf-1 is the number of fins not on plane ¢ = 6% or 4 = 0. The parameter Sn

has the value of +1 and -1 on the upper and lower fin surface respectively. As
shown in Fig. B-2, the radial locations of the inner and outer fin edges are
denoted by ry, and rj, and the quantities ¢2 and $b represent the angular
locations of the upper and lower surfaces of the %ins number i and i+l
respectively. 1In the above, ¢o-¢¢ represents the fin thickness, which for the
purposes of force and moment calculations has not been set to zero. For test
cases discussed in Section 5, ¢ is set to ¢¢ and hence fin thickness is neglected.
In the case of pitch plane symmetry:

g%:_&:_aix_.—.o
ez 3z

The integrals appearing ii (B-1) to (B-6) are computed numerically at each
step, z = zk.  The body integrals are all of the form:

NF ob
. i
i-2 f 5 @
i=] 9¢
These are evaluated using ®l
Nt a a b
T=v- D04 190D + 96,01 - ¢
i=1
ek b a
where: ¥ =.£ V() do ; 6, =0 3 ¢Nf+l = ox

In evaluating §, the body surface pressure on fin planes is taken to be an
average of the surface pressure on the upper and lower bodv fin junctions. It
is more convenient to perform the integration of equations in the computational
plane. In the symmetric case the above becomes:

0

1 . 1 '
‘J’=2f V_Y((%) dY=2_€ v(Y) 4y

This is numerically integrated on the uniform computational mesh using Simpson's
rule in the form

w=2—§1[\)1+4\)2+2\)3+4v4+2v5+. .
.+ 2"1-1—2 + "‘\’M—l + \’M]’ if M {s odd

B-2
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and

v o= Z%X [V] + &y + 2vq + bvy + V5 + ...

co + uyo3 + bvyy + _% (59y—1 + 3vy)], if M is even.

4te an e s i 4 ek s e

In the above, vy =Vv(¥y) , ¥y = 1 and AY = 1/(M-1)0, In the last
expression, the trapezoidal rule is used for the subinterval [Yy_j, Yu]. In
the nonsymmetric problem ¥ is written as
1. 1
: v = [ J@uy = [ vy
,* ° % °
E In this case, the integrands are periodic functions of Y with period 1 (i.e.,
: v(0) = v(1)) and the Simpson's rule becomes
: ¢J=% [v; + &g + 3 + vy + .0
e+ oyay + vy ], if M is odd
and
¢)=_A3_Y.[6vl+3v2+2v3+4\)4+2v5+... J
: 1
o+ yog + AVM-I] ,1f M is even, +

where vg = v(Yp), Y, = 1-AY and &Y = 1/M.

Integration over the fin surfaces is more cumbersome since inner and outer ‘
fin edges in every crossflow plane need not coincide with a grid point. Also
the fin may consist of many or only a single grid point. In order to allow for ’
leading edge functions which are double valued in z, such as on an arrow fin,
the fin 1s not required to extend to the body surface. Fin surface integrals
have the form:

r

o]
¥ -f V(r)dr

Ly

N '.1 Y SN !
cer Al L Tk B e

The integration is carried out in computational coordinates and leads to:

- XO
3 ] <
¥ = v_(r>dx=é' v (X)dX
1o Xr i

B-3
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Here Xy and X, are the inner and outer fin edge locations. Consider the
case where the inner-most and outer-most grid points on the surface of the fin

occur at Xp  and X, respectively. The fin surface integral is expressed in
i o

three parts:

X X X
aj Ng °
¥ = ( vdX + J- vdX + f vdX (B-7)
X Xq Xn
i i 0o

The first and last terms are approximated by:

X
ni XO
vadX = vy (Xq - X J‘ vdX = v, (X5 - ¥y )
X, i i X [ fe)
Ng
where vni = v(Xni) , vno = v(Xy ). The remaining term is evaluated using
o

Simpson's rule which requires that there be an odd number of pcints on the fin.
If the fin contains an even number of points, the outer most interval
{Xo, = 8X, X5 ] is evaluated using the trapezoidal rule while the remaining

i i

interval which now consists of an odd number of points is evaluated using
Simpson's rule. This leads to the following integration formula for terms 1, 2,
and 3:

odd:
%o :
f vdx = Vn (Xo - Xn T A_‘E) + vn (xn - X]’_ + é.:\:) +
< o o 3 i i 3
i
{‘:{rvn.+l + 2Vn +2 + Z#Vn.+3 AV l}g ‘,i
i i i ng- 3 '
K
!-
even: |
!
f vdz = vy BX+ X, - X, ) +AN v )y, (X, - X +4%) 4+ :
. o 2 o 6 o i 1 3
A,
i

{-"Vn._}_l + 2\)n.+2 + Avn +3 e A\)n -2 }g R | AX (2)
i i i Q 3 o 2

where 8X = 1/N

The code also computes, at each computaticnal step, Zk, the force and
moment vectors acting on the body truncated atr z = 2%. These quantities are
defined, for example, by
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k zk aF
Fo(2 ) =] —2dz (B-8)
0 9z
with similar expressions for the other truncated force and moment components.

The integrals of the type (B-8) are evaluated numerically using the trapezcidal
rule; i.e.,

F(Zk+l) F(Zk) (Zk"'l Zk) (_)alzl k (__)”;1 k+1

= + (e 2 + +

a @ 2 3z z=Z 32 z=z

with similar expressions for the other force and moment coefficients. Note that
this calculation requires the force and moment on the body truncated at the
initial plane z = z,. These quantities must be given along with the initial
flow field- data.

The final results are presented in coefficient form by dividing the force

p
components and their derivatives by.E: v2 A ¢ and the moment components and
® re
their derivative by P= V2(A )Y (z ), where A and Z are reference area and
2 = ref ref ref ref

reference lengths respectively.

The centers of pressure in the pitch and yaw planes are also calculated
using:

(Zep)p = [Ze + My/Fp]

(Zepy = [Ze = My/Fy)

for Fy # 0 and Fl £ 0.
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Figure B~2. Definition of parameters used in integration of force

and moment coefficients
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